MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "compare": {
        "fromid": 1,
        "fromrevid": 1,
        "fromns": 0,
        "fromtitle": "Il-Pa\u0121na prin\u010bipali",
        "toid": 2,
        "torevid": 2,
        "tons": 0,
        "totitle": "Matematika",
        "*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">Linja 1:</td>\n<td colspan=\"2\" class=\"diff-lineno\">Linja 1:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>'''<del class=\"diffchange diffchange-inline\">MediaWiki \u0121ie installat b</del>'<del class=\"diffchange diffchange-inline\">su\u010b\u010bess.</del>'''</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Il-kelma </ins>'''<ins class=\"diffchange diffchange-inline\">Matematika''' \u0121ejja mill-[[lingwa Griega|Grieg]] \u03bc\u03ac\u03b8\u03b7\u03bc\u03b1 (''m\u00e1thema''), li tfisser \"tg\u0127alim\", jew \"xjenza\"; \u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03cc\u03c2 (</ins>''<ins class=\"diffchange diffchange-inline\">mathematik\u00f3s</ins>''<ins class=\"diffchange diffchange-inline\">) tfisser \"wie\u0127ed li jrid jitg\u0127allem\".</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Ikkonsulta l</del>-<del class=\"diffchange diffchange-inline\">[https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Contents Gwida g\u0127all</del>-<del class=\"diffchange diffchange-inline\">utenti] sabiex tikseb iktar informazzjoni </del>dwar <del class=\"diffchange diffchange-inline\">kif tu\u017ca' s</del>-<del class=\"diffchange diffchange-inline\">softwer </del>tal-<del class=\"diffchange diffchange-inline\">wiki</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Fid</ins>-<ins class=\"diffchange diffchange-inline\">dixxiplina tal</ins>-<ins class=\"diffchange diffchange-inline\">Matematika nistudjaw problemi </ins>dwar <ins class=\"diffchange diffchange-inline\">il</ins>-<ins class=\"diffchange diffchange-inline\">kwantit\u00e0, estensjoni u figuri spazjali, moviment </ins>tal-<ins class=\"diffchange diffchange-inline\">korpi, u l-istrutturi kollha fejn nistg\u0127u ne\u017caminaw dawn l-aspetti b'mod \u0121enerali</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>== <del class=\"diffchange diffchange-inline\">Biex tibda </del>==</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Il-'''Matematika''' g\u0127andha tradizzjoni qadima fil-\u0121nus kollha; kienet l-ewwel dixxiplina li adottat metodi rigoru\u017ci \u0127afna, u b'hekk la\u0127qet l-istatus ta\u2019 [[xjenza]]; progressivament il-metodi tag\u0127ha \u017cviluppaw u nfirxu ma \u0127afna oqsma fejn jistg\u0127u ikunu ta\u2019 g\u0127ajnuna fil-komputazzjoni u l-immudellar. </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage</del>/<del class=\"diffchange diffchange-inline\">Manual</del>:<del class=\"diffchange diffchange-inline\">Configuration_settings Lista </del>ta' <del class=\"diffchange diffchange-inline\">preferenzi </del>g\u0127all-<del class=\"diffchange diffchange-inline\">konfigurazzjoni</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Manual</del>:<del class=\"diffchange diffchange-inline\">FAQ Mistoqsijiet rikorrenti </del>fuq il-<del class=\"diffchange diffchange-inline\">MediaWiki</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Storja ==</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">postorius</del>/<del class=\"diffchange diffchange-inline\">lists</del>/<del class=\"diffchange diffchange-inline\">mediawiki</del>-<del class=\"diffchange diffchange-inline\">announce</del>.<del class=\"diffchange diffchange-inline\">lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia</del>.<del class=\"diffchange diffchange-inline\">org/ </del>Il-<del class=\"diffchange diffchange-inline\">lista </del>tal-<del class=\"diffchange diffchange-inline\">posta t\u0127abbar </del>'l <del class=\"diffchange diffchange-inline\">MediaWiki</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{artiklu prin\u010bipali|Kronolo\u0121ija tal-matematika}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{...|1}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Analisi Matematika ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L-&lt;nowiki&gt;&lt;/nowiki&gt;'''analisi matematika''' bdiet mill-formulazzjoni rigoru\u017ca tal-[[kalkulu infinite\u017cmali]]. Hija ferg\u0127a tal-[[matematika]] li tikkon\u010bentra fuq l-ideja tal-[[limitu (matematika)|limitu]]: il-[[limitu ta\u2019 su\u010b\u010bessjoni]] jew il-[[limitu ta\u2019 funzjoni]]. Tinkludi wkoll it-teoriji tad-[[Derivata|differenzazzjoni]], [[Integral|integrazzjoni]] u [[Me\u017cura (matematika)|me\u017cura]], [[Serje (matematika)|serji infiniti]], u [[funzjoni analitika|funzjonijiet analiti\u010bi]]. L-istudju ta\u2019 dawn it-teoriji \u0127afna drabi jsir fil-kuntest tan-[[numru reali|numri reali]], [[numru kompless|numri komplessi]], u\u00a0 [[funzjoni (matematika)|funzjonijiet]] reali u komplessi. Madankollu, nistg\u0127u niddefinixxu u nistudjaw dawn it-teoriji f\u2019kull [[spazju#Matematika u spazju|spazju]] ta\u2019 o\u0121\u0121etti matemati\u010bi li fih hu possibbli li nag\u0127tu definizzjoni ta\u2019 \"distanza\" ([[spazju metriku]]) jew\u00a0 i\u017cjed \u0121enerali ta\u2019 \"qrubija\" ([[spazju topolo\u0121iku]]).</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== G\u0127aliex l-Analisi Astratta? ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Stampa:Hilbert.jpg|thumb|right|200px| David Hilbert t.1862 m.1943]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">G\u0127andna nistudjaw l-analisi matematika fil-kuntest i\u017cjed wiesa' ta\u2019 l-ispazji topologi\u010bi jew spazji metri\u010bi g\u0127al \u017cew\u0121 ra\u0121unijiet:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* l-ewwel, g\u0127ax l-istess metodi ba\u017ci\u010bi \u0127afna drabi japplikaw g\u0127al klassi ta\u2019 problemi li hi \u0127afna usa\u2019 (pere\u017cempju, l-istudju ta\u2019 [[Analisi Funzjonali|spazji ta\u2019 funzjonijiet]]).</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* it-tieni, u mhux inqas importanti, g\u0127ax meta nifhmu l-analisi fi spazji aktar astratti\u00a0 sikwit nsibu li nistg\u0127u napplikawha direttament g\u0127al problemi klassi\u010bi. Pere\u017cempju, fl-[[Analisi armonika|analisi ta\u2019 Fourier]], nistg\u0127u nesprimu kull funzjoni b\u0127ala \u010berta serje infinita (ta\u2019 funzjonijiet trigonometri\u010bi\u00a0 jew esponenzjali komplessi). Fi\u017cikament, b\u2019din id-dekompo\u017cizzjoni nirridu\u010bu mew\u0121a (tal-\u0127oss) arbitrarja fil-frekwenzi li jikkomponuha. Il \"pi\u017cijiet\" jew koeffi\u010bjenti tat-termini fl-espansjoni ta\u2019 Fourier ta\u2019 funzjoni, jistg\u0127u jitqiesu b\u0127ala l-komponenti ta\u2019 vettur fi spazju ta\u2019 dimensjoni infinita li nsibuh b\u0127ala [[spazju ta\u2019 Hilbert]]. Mela l-istudju tal-funzjonijiet definiti f\u2019dil-qag\u0127da i\u017cjed \u0121enerali jipprovdi metodu konvenjenti g\u0127ad-derivazzjoni ta\u2019 ri\u017cultati fuq kif il-funzjonijiet ivarjaw fl-ispazju u mal-\u0127in, jew f\u2019termini aktar matemati\u010bi fuq l-[[ekwazzjoni differenzjali|ekwazzjonijiet differenzjali parzjali]], fejn din it-teknika nafuha b\u0127ala separazzjoni tal-[[varjabbli]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Storja tal-Analisi Matematika ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Il-[[matematikuGrieg|matemati\u010bi Griegi]] b\u0127al [[Ewdossu ta\u2019 Knidu|Ewdossu]] u [[Arkimede]] meta applikaw il-[[metodu ta\u2019 l-e\u017cawriment]] biex jikkalkulaw l-arja u l-volum ta\u2019 xi re\u0121juni u solidi u\u017caw il-kun\u010betti tal-limiti u l-konvergenza b\u2019mod informali. Fl-[[matematiku Indjan|Indja]], il-matematiku tas-[[seklu 12]], [[Bhaskara]] \u0121a kellu l-ideja tal-[[kalkulu differenzjali]] u ta e\u017cempji tad-[[derivata]], flimkien mal-propo\u017cizzjoni ta\u2019 dik li nsej\u0127ulu llum it-[[Teorema ta\u2019 Rolle]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Fis-[[seklu 14]], l-analisi matematika bdiha [[Madhava ta\u2019 Sangamagrama]],\u00a0 meqjus b\u0127ala\u00a0 l-\"[[fundatur ta\u2019l-analisi matematika]]\". Hu \u017cviluppa idejat fundamentali: l-i\u017cvilupp ta\u2019 funzjoni f\u2019[[serje infinita]], [[serje ta\u2019 potenzi]], is-[[serje ta\u2019 Taylor]], u l-approssimazzjoni razzjonali ta\u2019 serje infinita. \u017bviluppa wkoll is-serje ta\u2019 Taylor g\u0127all-[[funzjonijiet trigonometri\u010bi]] tas-[[senu]], [[kosenu]], [[tan\u0121enti]] u [[arktan\u0121enti]], u stima l-i\u017cbal li nag\u0127mlu meta naqtg\u0127u is-serje. \u017bviluppa l-[[frazzjonijiet kontinwati]] infiniti, l-[[Integral|integrazzjoni]] b\u2019termini wara termini, l-approssimazzjoni b\u2019serje ta\u2019 Taylor tas-senu u kosenu, u s-serje f\u2019potenzi tar-[[ra\u0121\u0121]], [[diametru]], [[\u010birkonferenza]], [[\u03c0]], \u03c0/4 u l-anglu [[\u03b8]]. Id-dixxipli tieg\u0127u fl-i[[Skola ta\u2019 Kerala]] baqg\u0127u ikkabru x-xog\u0127ol tieg\u0127u sas-[[seklu 16]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Stampa:Gottfried Wilhelm von Leibniz.jpg|thumb|right|200px|Gottfried Leibniz t.1646 m.1716]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Fl-Ewropa, fit-tieni nofs tas-[[seklu 17]], [[Isaac Newton|Newton]] u [[Gottfried Leibniz|Leibniz]] independement minn xulxien \u017cviluppaw il-kalkulu, li bl-istimulu ta\u2019 l-applikazzjonijiet matul is-[[seklu 18]] rabba \u0127afna frieg\u0127i b\u0127all-[[kalkulu tal-varjazzjonijiet]], l-[[ekwazzjonijiet differenzjali ordinarji]] u [[parzjali]] u l-[[analisi ta\u2019 Fourier]] . F\u2019dal-perijodu, il-metodi tal-kalkulu \u0121ew applikati biex japprossimaw [[problemi diskreti]] b\u2019o\u0127rajn kontinwi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Fis-[[seklu18]], [[Leonard Euler|Euler]] introdu\u010ba il-kun\u010bett ta\u2019 [[Funzjonijiet (matematika)|funzjoni matematika]]. Fis-[[seklu19]], [[Augustin Louis Cauchy|Cauchy]] kien l-ewwel li stabbilixa l-kalkulu fuq pedament lo\u0121iku sod bl-introduzzjoni ta\u2019 l-ideja tas-[[su\u010b\u010bessjoni ta\u2019 Cauchy]]. Beda wkoll it-teorija formali ta\u2019 l-[[analisi komplessa]]. [[Simeon Poisson|Poisson]], [[Liouville]], [[Jean-Baptiste Joseph Fourier|Fourier]] u o\u0127rajn studjaw l-ekwazzjonijiet differenzjali parzjali u l-[[analisi armonika]]. </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">F\u2019nofs is-seklu [[Bernhard Riemann|Riemann]] introdu\u010ba t-teorija tieg\u0127u tal-[[Integral|integrazzjoni]]. F\u2019l-a\u0127\u0127ar terz tas-seklu 19, [[Karl Weierstrass|Weierstrass]] li l-fehma tieg\u0127u kienet li l-argumenti \u0121ometri\u010bi jistg\u0127u iqarqu bina, da\u0127\u0127al l-aritmetizzazzjoni ta\u2019 l-analisi u introdu\u010ba id-definizzjoni \"epsilon-delta\" tal-[[limitu]]. Wara, il-matemati\u010bi bdew jinkwietaw li kienu qeg\u0127din jassumu l-e\u017cistenza tal-[[kontinwu]] tan-[[numri reali]] ming\u0127ajr prova. [[Dedekind]] imbag\u0127ad ta kostruzzjoni tan-numri reali bil-methodu tal-[[qtug\u0127 ta\u2019 Dedekind]], li bih il-matemati\u010bi jikkrejaw numri rrazzjonali li jimlew il-\"vojt\" bejn in-numri razzjonali, u hekk jo\u0127olqu sett [[komplet]]: il-kontinwu tan-numri reali. Madwar dak i\u017c-\u017cmien l-isforzi g\u0127ar-raffinar tat-[[teoremi]] ta\u2019 l-[[integrazzjoni ta\u2019 Riemann]] wasslu g\u0127all-istudju tal-\"qies\" tas-sett tad-[[diskontinwitajiet]] tal-funzjonijiet reali.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Fl-istess \u0127in, bdew jin\u0127olqu \"[[mostri]]\" (funzjonijiet [[mkien kontinwi]], funzjonijiet kontinwi imma mkien differenzjabbli, [[kurvi li jimlew l-ispazju]]). F\u2019dal-kuntest, [[Camille Jordan|Jordan]] \u017cviluppa t-teorija tieg\u0127u tal-[[me\u017cura]], [[Georg Cantor|Cantor]] \u017cviluppa dik li da\u017c-\u017cmien insej\u0127ulha it-[[teorija sempli\u010bi tas-settijiet]], u [[Baire]] ipprova it-[[teorema tal-kategoriji ta\u2019 Baire]]. Fil-bidu tas-[[seklu 20]], il-kalkulu \u0121ie formalizzat b\u2019l-u\u017cu tat-[[teorija assjomatika tas-settijiet]]. [[Henri Leon Lebesgue|Lebesgue]] irri\u017colva l-problema tal-mi\u017cura, u [[David Hilbert|Hilbert]] introdu\u010ba l-i[[spazji ta\u2019 Hilbert]] biex jirri\u017colvi l-[[ekwazzjonijiet integrali]]. L-ideja ta\u2019 l-i[[spazji vettorjali normati]] kienet infirxet, u f\u2019l-20ijiet tas-seklu [[Stefan Banach|Banach]] \u0127oloq l-[[analisi funzjonali]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>=== <ins class=\"diffchange diffchange-inline\">Oqsma ta' l-Analisi ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L-Analsi Matematika\u00a0 tinkludi dawn l-oqsma: </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Analisi Reali]], l-istudju [[rigoru\u017c]] tad-[[Derivata|derivati]] u l-[[Integral|integrali]] ta\u2019 funzjonijiet b\u2019varjabbli reali. Dan jinkludi l-istudju tas-[[su\u010b\u010bessjonijiet]] u l-[[limiti]] tag\u0127hom, is-[[serji]], u l-[[me\u017curi]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Analisi komplessa|Analisi Komplessa]], l-istudju ta\u2019 funzjonijiet mill-[[pjan kompless]] g\u0127all-pjan kompless li huma komplessament differenzjabbli.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Analisi Funzjonali]], l-istudju ta\u2019 spazji ta\u2019 funzjonijiet b\u2019l-u\u017cu ta\u2019 kun\u010betti b\u0127al [[spazji ta\u2019 Banach]] u [[spazji ta\u2019 Hilbert]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Analisi armonika|Analisi Armonika]] l-istudju tas-[[Serje ta' Fourier|serji ta' Fourier]] u l-astrazzjonijiet tag\u0127hom..</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[\u0120ometrija Differenzjali u Topolo\u0121ija]], l-applicazzjoni tal-kalkulu g\u0127al spazji matemati\u010bi astratti li g\u0127andhom struttura interna komplikata.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Analisi Numerika]], l-istudju ta\u2019 l-algoritmi u\u017cati g\u0127all-approssimazzjoni ta\u2019 problemi tal-matematika kontinwa.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Il-kelma '''Analisi Klassika''' s-soltu tfisser analisi ming\u0127ajr l-u\u017cu tal-metodi tal-analisi funzjonali.\u00a0 L-istudju tal-[[Ekwazzjoni differenzjali|ekwazzjonijiet differenzjali]] issa\u00a0 huwa mferrex ma frieg\u0127i o\u0127ra b\u0127as-[[sistemi dinami\u010bi]], imma \u0121\u0127adu mportanti \u0127afna fl-analisi konvenzjonali.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Al\u0121ebra ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L-'''al\u0121ebra''' hi wa\u0127da mill-frieg\u0127i prin\u010bipali tal-[[matematika]] u titratta l-istudju ta\u2019 [[strutturi al\u0121ebrin]], [[relazzjonijiet]] u [[kwantit\u00e0]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Il-kelma al\u0121ebra (mill-G\u0127arbi \u0627\u0644\u062c\u0628\u0631, ''al-\u0121abr'' li tfisser \"\u0121abra\") \u0121ejja mill-isem tal-ktieb tal-matematiku [[Persjan]] [[G\u0127arbi]] [[Mu\u0127ammad ibn Musa al-Khwari\u017cmi]], intitolat ''Al-Kitab al-\u0120abr wa-l-Muqabala'' (\"Il-Ktieb tal-\u0120abra u t-Tqabbil\"), li jittratta ir-ri\u017coluzzjoni tal-[[ekwazzjonijiet linjari]] u [[kwadrati\u010bi]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L-[[al\u0121ebra elementari]] li normalment tifforma parti mill-kurrikulu ta\u2019 l-iskejjel sekondarji, tintrodu\u010bi l-ideja ta\u2019 [[simboli]] jew [[varjabbli]] li jirrepre\u017centaw kwantitajiet mhux mag\u0127rufa. Nitg\u0127almu wkoll kif ng\u0127oddu u nimmoltiplikaw dawn il varjabbli, fuq il-polinomji mibnija minnhom u l-fattorizzazzjoni u l-kalkulazzjoni tar-[[radi\u010bi]]. </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Per\u00f2, l-al\u0121ebra hi \u0127afn\u2019 usa\u2019 minn hekk. L-g\u0127add u l-moltiplikazzjoni nistg\u0127u nqisuhom b\u0127ala [[operazzjoniet]] \u0121enerali\u00a0 u d-definizzjoni e\u017catta tag\u0127hom twassalna g\u0127al strutturi \u0121odda b\u0127al [[gruppi]], [[\u010brieki]] u [[kampi]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Klassifikazzjoni ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{...|7}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== L-Al\u0121ebra Elementari ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L-'''Al\u0121ebra elementari''' hija l-forma l-i\u017cjed ba\u017cika ta\u2019 l-al\u0121ebra. Jitg\u0127almuha l-istudenti li m\u2019g\u0127andhomx tg\u0127alim tal-mathematika i\u017cjed avvanzat mill-prin\u010bipji ba\u017ci\u010bi ta\u2019 l-aritmetika. Fl-aritmetika, nsibu biss in-numri u l-operazzjonijiet aritmeti\u010bi fuqhom (b\u0127al +, \u2212, \u00d7, \u00f7). Fl-al\u0121ebra, in-numri spiss nirripre\u017centawhom bis-simboli (b\u0127al ''a'', ''x'', ''y''). Din ir-repre\u017centazzjoni g\u0127andha dawn il-vanta\u0121\u0121i:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Biha nistg\u0127u nag\u0127tu formulazzjoni \u0121enerali tar-regoli aritmeti\u010bi (pere\u017cempju ''a'' + ''b'' = ''b'' + ''a'' g\u0127al kull ''a'' u ''b''), u hekk nistg\u0127u nag\u0127mlu l-ewwel pass fl-esplorazzjoni sistematika tal-propjetajiet tas-sistema tan-numri reali.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Biha nistg\u0127u nirreferu g\u0127an-numri \"mhux mag\u0127rufin\", nifformulaw ekwazzjonijiet u nistudjaw kif nirri\u017colvuhom (pere\u017cempju, \"Sib numru ''x'' sabiex 3''x'' + 1 = 10\").</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Biha nistg\u0127u nag\u0127mlu formulazzjoni ta\u2019 relazzjonijiet funzjonali\u00a0 (b\u0127al \"Jekk tbig\u0127 ''x'' biljetti, jkollok qlig\u0127\u00a0 ta\u2019 3''x'' - 10 ewri, jew ''f''(''x'') = 3''x'' - 10, fejn ''f'' hija l-funzjoni u ''x'' huwa n-numru li ta\u0121ixxi fuqu l-funzjoni .\").</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== X'inhi l-Al\u0121ebra Astratta ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L-'''al\u0121ebra astratta\u2019'' testendi il-kun\u010betti li nsibu fl-al\u0121ebra elementari g\u0127al o\u0127rajn i\u017cjed \u0121enerali.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''[[Settijiet]]''': Minnflok\u00a0 nikkunsidraw biss it-tipi ta\u2019 [[numri]] differenti, fl-al\u0121ebra astratta nqisu il-kun\u010bett i\u017cjed \u0121enerali ta\u2019 ''sett'' li hu \u0121abra ta\u2019 o\u0121\u0121etti (li jg\u0127idulhom [[elementi]]) li g\u0127andhom \u010berta propjet\u00e0 spe\u010bifika g\u0127as-sett. Pere\u017cempju in-numri reali jiffurmaw sett u n-numri komplessi sett ie\u0127or. E\u017cempji o\u0127ra ta\u2019 settijiet jinkludu is-sett tal-[[matri\u010bi]] ta\u2019 tnejn-bi-tnejn, is-sett tal-[[polinomji]] tat-tieni ordni (''ax''&lt;sup&gt;2&lt;/sup&gt; + ''bx'' + ''c''), is-sett tal-[[vetturi]] bi-dimensjonali, u [[gruppi finiti]] varji b\u0127all-[[gruppi \u010bikli\u010bi]], ji\u0121ifieri l-gruppi tan-numri interi [[modulo]] ''n''. It-[[Teorija tas-settijiet]] hija ferg\u0127a tal-[[lo\u0121ika]] u teknikament mhux ferg\u0127a ta\u2019 l-al\u0121ebra.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''[[Operazzjonijiet binarji]]''': L-ideja ta\u2019 l-[[g\u0127add]] (+) nistg\u0127u nag\u0127mluha i\u017cjed astratta biex ittina ''operazzjoni binarja'', * ng\u0127idu a\u0127na. Il-kun\u010bett ta\u2019 operazzjoni binarja ma jfisser xejn jekk ma nag\u0127tux is-sett li fuqu qed niddefinixxu l-operazzjoni. G\u0127al \u017cew\u0121 elementi ''a'' u ''b'' f\u2019sett ''S'' ''a''*''b'' ittina element ie\u0127or fis-sett, (dil-kundizzjoni ng\u0127idulha [[g\u0127eluq]] ta\u0127t l-operazzjoni). L-[[G\u0127ad]] (+), it-[[Tnaqqis]] (-), il-[[moltiplikazzjoni]] (\u00d7), u d-[[matematika divi\u017cjoni|divi\u017cjoni]] (\u00f7) huma operazzjonijiet binarji meta niddefinuhom fuq settijiet addattati, kif ukoll l-g\u0127add u l-moltiplikazzjoni tal-matri\u010bi, vetturi u polinomji.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''[[Elementi ta\u2019 l-identit\u00e0]]''': Il-kun\u010bett ta\u2019 l-\u201celement ta\u2019 l-identit\u00e0\u201d huwa l-astrazzjoni tan-numri \u017cero u wie\u0127ed. \u017bero huwa l-element ta\u2019 l-identit\u00e0 g\u0127all-g\u0127add and u wie\u0127ed l-element ta\u2019 l-identit\u00e0 g\u0127all-moltiplikazzjoni. G\u0127al operazzjoni binarja \u0121enerali * l-element ta\u2019 l-identit\u00e0 ''e'' irid jissodisfa ''a'' * ''e'' = ''a'' u ''e'' * ''a'' = ''a''. G\u0127all-g\u0127add din hi sodisfatta billi ''a'' + 0 = ''a'' u 0 + ''a'' = ''a'' u g\u0127all-moltiplikazzjini wkoll g\u0127ax ''a'' \u00d7 1 = ''a'' u 1 \u00d7 ''a'' = ''a''. Imma, jekk nie\u0127du in-numri naturali po\u017citivi u l-operazzjoni ta\u2019 l-g\u0127add, m\u2019hemmx element ta\u2019 l-identit\u00e0.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''[[Elementi inversi]]''': Minn-numri negattivi no\u0127olqu l-kun\u010bett ta\u2019 ''element invers'' jew sempli\u010biment l-''invers''. G\u0127all-g\u0127add, l-invers ta\u2019 ''a'' huwa ''-a'', u g\u0127all-moltiplikazzjoni l-invers hu 1/''a''. L-element invers \u0121enerali ''a''&lt;sup&gt;-1&lt;/sup&gt; jrid jissodifa r-relazzjoni ''a'' * ''a''&lt;sup&gt;-1&lt;/sup&gt; = ''e'' u ''a''&lt;sup&gt;-1&lt;/sup&gt; * ''a'' = ''e''.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''[[Asso\u010bjattivit\u00e0]]''': L-g\u0127add tan-numri interi g\u0127andu propjet\u00e0 li nsej\u0127ulha asso\u010bjattivit\u00e0. Ji\u0121ifieri, l-kumbinazzjoni tan-numri li nkunu qed nog\u0127du ma tbiddilx is-somma tag\u0127hom. Pere\u017cempju: (2+3)+4=2+(3+4). Fil-kuntest generali, din issir (''a'' * ''b'') * ''c'' </ins>= <ins class=\"diffchange diffchange-inline\">''a'' * (''b'' * ''c''). Il-bi\u010b\u010ba kbira ta\u2019 l-operazzjonijiet binarji g\u0127andhom din il-propjet\u00e0 imma t-tnaqqis u d-divi\u017cjoni le. </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''[[Kommutattivit\u00e0]]''': L-g\u0127add tan-numri interi g\u0127andu wkoll propjet\u00e0 o\u0127ra li ng\u0127idulha kommutattivit\u00e0. Ji\u0121ifieri, l-ordni tan-numri li nkunu qed nog\u0127du ma tbiddilx is-somma tag\u0127hom. Pere\u017cempju: 2+3=3+2. Fil-kuntest generali, din issir ''a'' </ins>* <ins class=\"diffchange diffchange-inline\">''b'' = ''b'' * ''a''. Mhux l-operazzjonijiet binarji kollha g\u0127andhom din il-propjet\u00e0. L-g\u0127add u l-moltiplikazzjoni tan-numri interi g\u0127andhom din il-propjet\u00e0 imma l-</ins>[<ins class=\"diffchange diffchange-inline\">[moltiplikazzjoni tal-matri\u010bi]] le.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==== Gruppi\u2014strutturi ta\u2019 sett b\u2019operazzjoni binarja wa\u0127da ====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Meta ni\u0121bru flimkien il-kun\u010betti li rajna qabel, ikollna wa\u0127da mill-i\u017cjed strutturi mportanti fil-matematika: il- '''[[Grupp (Matematika)|grupp]]'''. Grupp jikkonsisti f\u2019sett ''S'' u [[operazzjoni wa\u0127da]] li rridu, li niktbuha '*', imma li jrid ikolla dawn il-propjetajiet:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Irid ikun hemm element ta\u2019 l-identit\u00e0 ''e'', li g\u0127al kull membru ie\u0127or ''a'' ta\u2019 ''S'', ''e'' * ''a'' u ''a'' * ''e'' huma t-tnejn ugwali g\u0127al\u00a0 ''a''.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Kull element irid ikollu invers</ins>: <ins class=\"diffchange diffchange-inline\">g\u0127al kull membru ie\u0127or ''a'' ta\u2019 ''S'', irid je\u017cisti\u00a0 membru ''a''&lt;sup&gt;-1&lt;</ins>/<ins class=\"diffchange diffchange-inline\">sup&gt; sabiex ''a'' * ''a''&lt;sup&gt;-1&lt;/sup&gt; u ''a''&lt;sup&gt;-1&lt;/sup&gt; * ''a'' huma t-tnejn ugwali g\u0127all-element ta\u2019 l-identit\u00e0.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* L-operazzjoni hi asso\u010bjattiva: g\u0127al ''a'', ''b'' u ''c'' membri ta\u2019 ''S'', (''a'' * ''b'') * ''c'' hija ugwali g\u0127al ''a'' * (''b'' * ''c'').</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Jekk grupp hu anki [[kommutattiv]] - ji\u0121ifieri, g\u0127al kull \u017cewg membri ''a'' u ''b'' ta\u2019 ''S'', ''a'' * ''b'' hija ugwali g\u0127al ''b'' * ''a'' \u2013 il-grupp ng\u0127idu li hu [[Abeljan]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Pere\u017cempju, is-sett tan-numri interi bl-operazzjoni ta\u2019 l-g\u0127add huwa grupp. F\u2019dal grupp, l-identit\u00e0 hija 0 u l-invers ta\u2019 kull element ''a'' huwa n-negativ tieg\u0127u, -''a''. Il-kundizzjoni ta\u2019 asso\u010bjattivit\u00e0 hi sodisfatta, g\u0127ax g\u0127al kull tliet numri interi\u00a0 ''a'', ''b'' u ''c'', (''a'' + ''b'') + ''c'' = ''a'' + (''b'' + ''c'').</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Imma l-interi bl-operazzjoni tal-moltiplikazzjoni ma jiffurmawx grupp. Dan ji\u0121ri g\u0127ax, in \u0121enerali, l-invers moltiplikattiv ta\u2019 numru interu mhuwiex interu. Pere\u017cempju, 4 huwa interu, imma\u00a0 l-invers moltiplikattiv tieg\u0127u hu 1</ins>/<ins class=\"diffchange diffchange-inline\">4, li mhux interu.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L-istudju tal-gruppi jsir fit-[[teorija tal-gruppi]]</ins>. <ins class=\"diffchange diffchange-inline\">Wie\u0127ed mir-ri\u017cultati l-i\u017cjed importanti f\u2019din it-teorija kien il-[[klassifikazzjoni tal-gruppi finiti sempli\u010bi]] li l-ikbar parti tag\u0127ha \u0121iet ippublikata bejn xi l-1955 u l-1983</ins>. <ins class=\"diffchange diffchange-inline\">Din tqassam il-[[gruppi sempli\u010bi]] [[finiti]] f\u2019xi 30 tip ba\u017ciku.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{| class=\"toccolours\" border=\"1\" cellpadding=\"4\" cellspacing=\"0\" style=\"border-collapse: collapse; margin:0 ;\" </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| colspan=11|'''E\u017cempji'''\u00a0 (MA = Mhux Applikabbli, b\u017c = bla \u017cero)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!Sett:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">! colspan=2|[[Numri naturali]] &lt;math&gt;\\mathbb{N}&lt;</ins>/<ins class=\"diffchange diffchange-inline\">math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">! colspan=2|[[Numri interi]] &lt;math&gt;\\mathbb{Z}&lt;</ins>/<ins class=\"diffchange diffchange-inline\">math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">! colspan=4|[[Numri razzjonali]] &lt;math&gt;\\mathbb{Q}&lt;/math&gt;, [[Numri reali]] &lt;math&gt;\\mathbb{R}&lt;/math&gt; u [[Numri komplessi]] &lt;math&gt;\\mathbb{C}&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">! colspan=2|Interi mod 3</ins>: <ins class=\"diffchange diffchange-inline\">{0,1,2}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!Operazzjoni</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| + </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| \u00d7 (b\u017c)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| +</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| \u00d7 (b\u017c)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| +</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| \u2212</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| \u00d7 (b\u017c)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| \u00f7 (b\u017c)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| +</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| \u00d7 (b\u017c)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|Mag\u0127luq</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Identit\u00e0</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 0</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 1</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 0</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 1</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 0</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| MA</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 1</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| MA</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 0</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 1</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Invers</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| MA</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| MA</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| -a</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| MA</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| -a</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| a</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| &lt;math&gt;\\begin{matrix} \\frac{1}{a} \\end{matrix}&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| a</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 0,2,1, respettivament</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| MA, 1, 2, respettivament</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Asso\u010bjattiv</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Le</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Le</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Kommutativ</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Le</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Le</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Iva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| Struttura</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[monoid]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[monoid]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| grupp Abeljan </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[monoid]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| grupp Abeljan</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[kwa\u017cigrupp]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| grupp Abeljan</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[kwa\u017cigrupp]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| grupp Abeljan</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| grupp Abeljan (&lt;math&gt;\\mathbb{Z}_2&lt;/math&gt;)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Semigruppi]], [[kwa\u017cigruppi]], u [[monoidi]] huma strutturi simili g\u0127all-gruppi, imma i\u017cjed \u0121enerali. Jikkonsistu f\u2019sett u operazzjoni binarja mag\u0127luqa, imma ma jissodisfawx il-kondizzjonijiet l-o\u0127ra ne\u010bessarjament. [[Semigrupp]] g\u0127andu operazzjoni binarja ''asso\u010bjattiva'', imma jista\u2019 jkun li m\u2019g\u0127andux element ta\u2019 l-identit\u00e0. [[Monoid]] huwa semigrupp li g\u0127andu identit\u00e0 imma jista\u2019 jkun li m\u2019g\u0127andux invers g\u0127al kull element. [[Kwa\u017cigrupp]] g\u0127andu l-propjet\u00e0 li kull element jista\u2019 jinbidel f\u2019kull ie\u0127or bi pre- jew post-operazzjoni unika; imma l-operazzjoni binarja jista\u2019 jkun li mhux asso\u010bjattiva.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Il-gruppi kollha huma monoidi, u l-monoidi kollha huma semigruppi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==== \u010arieki u Kampi\u2014strutturi ta\u2019 sett b\u2019\u017cew\u0121 operazzjonijiet binarji, (+) u (\u00d7) ====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Il-gruppi g\u0127andhom operazzjoni binarja wa\u0127da biss. Biex nispjegaw il-mekkani\u017cmu tat-tipi ta\u2019 numri differenti kompletament, hemm b\u017conn li nistudjaw strutturi b\u2019\u017cew\u0121 operazzjonijiet. L-i\u017cjed importanti fost dawn huma \u010b-[[\u010arieki]], u l-[[Kampi]]. </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Id-'''[[Distributtivit\u00e0]]''' ti\u0121\u0121eneralizza l-''li\u0121i distributtiva'' tan-numri u tiffissa\u00a0 f\u2019liema ordni g\u0127andna napplikaw l-operazzjonijiet, (ng\u0127idulha l-[[pre\u010bedenza]]). G\u0127all-interi (''a'' + ''b'') \u00d7 c = ''a''\u00d7''c''+ ''b''\u00d7''c'' u ''c'' \u00d7 (''a'' + ''b'') = ''c''\u00d7''a'' + ''c''\u00d7''b'', u ng\u0127idu li \u00d7 hija '' distributtiva '' fuq +.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''[[\u010airku]]''' g\u0127andu \u017cew\u0121 operazzjonijiet\u00a0 (+) u (\u00d7), fejn \u00d7 hu distributtiv fuq +. Ta\u0127t l-ewwel operazzjoni (+) jifforma ''grupp Abeljan''. Ta\u0127t it-tieni operazzjoni (\u00d7) hu asso\u010bjattiv, imma m\u2019hemmx b\u017conn ta' identit\u00e0 jew ta' invers, u allura ma nistg\u0127ux niddividu. L-element ta\u2019 l-identit\u00e0 ta\u2019 l-g\u0127add (+) niktbuha b\u0127ala 0 u l-inverse ta\u2019 l-g\u0127add ta\u2019 ''a'' jinkiteb -''a''.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">In-numri interi huma e\u017cempju ta\u2019 \u010birku. </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''[[Kamp]]''' hu ''\u010birku'' b\u2019propjet\u00e0 o\u0127ra mi\u017cjuda li l-elementi kollha barra 0 jiffurmaw\u00a0 ''grupp Abeljan'' ta\u0127t \u00d7. L-identit\u00e0 moltiplikattiva (\u00d7) niktbuha b\u0127ala 1 u l-invers moltiplikattiv ta\u2019 ''a'' jinkiteb ''a''&lt;sup&gt;-1&lt;</ins>/<ins class=\"diffchange diffchange-inline\">sup&gt;.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">In-numri razzjonali, in-numri reali u n-numri komplessi huma kollha e\u017cempji ta\u2019 kampi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Al\u0121ebriet ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Il-kelma '''''al\u0121ebra''''' nu\u017cawha wkoll g\u0127al xi [[strutturi al\u0121ebrin]]</ins>:</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Al\u0121ebra fuq kamp]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Al\u0121ebra fuq sett]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Al\u0121ebra Boolejana]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[F-al\u0121ebra]] u [[F-koal\u0121ebra]] fit-[[teorija tal-kategoriji]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Sigma-al\u0121ebra]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Storja </ins>ta' <ins class=\"diffchange diffchange-inline\">l-al\u0121ebra ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L-al\u0121ebra nistg\u0127u nsibu l-ori\u0121ini tag\u0127ha fil-[[Babilonja]] antika. Il-Babilonjani \u017cviluppaw\u00a0 [[sistema aritmetiku]] avvanzat li bih setg\u0127u jag\u0127mlu kalkulazzjonijiet b\u2019metodu al\u0121ebri. Permezz ta\u2019 dan is-sistema, setg\u0127u japplikaw formoli u jikkalkulaw valuri mhux mag\u0127rufa g\u0127al klassi ta\u2019 problemi li da\u017c-\u017cmien nirri\u017colvuhom bl-u\u017cu ta\u2019 [[ekwazzjonijiet linjari]], [[ekwazzjonijiet kwadrati\u010bi]] u [[ekwazzjonijiet linjari indeterminati]]. G\u0127all-kontrarju, il-bi\u010b\u010ba kbira tal-matemati\u010bi [[E\u0121izzjani]] ta\u2019 dak i\u017c-\u017cmien, u l-bi\u010b\u010ba kbira tal-matemati\u010bi [[Indjani]], [[Griegi]] u [[\u010aini\u017ci]] f\u2019l-[[ewwel millennju QK]], is-soltu kienu jirri\u017colvu dawn il-problemi b\u2019metodi [[\u0121ometri\u010bi]], b\u0127al dawk imfissra\u00a0 fil-''[[Papiru Matematiku ta\u2019 Rhind]]'', ''[[Sulba Sutras]]'', ''[[L-Elementi ta\u2019 Ewklidi]]'', u ''[[Id-Disg\u0127a Kapitli fuq\u2019 l-Arti Matematika]]''.\u00a0 Ix-xog\u0127ol \u0121ometriku tal-Griegi, li l-Elementi huwa e\u017cempju tajjeb \u0127afna tieg\u0127u, ipprovda s-sisien </ins>g\u0127all-<ins class=\"diffchange diffchange-inline\">\u0121eneralizzazzjoni tal-formuli mis-soluzzjoni ta\u2019 problemi partikulari g\u0127al sistemi i\u017cjed \u0121enerali li jistg\u0127u jintu\u017caw g\u0127all-formulazzjoni u s-soluzzjoni tal-ekwazzjonijiet.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Stampa:Image-Al-Kit\u0101b al-mu\u1e2bta\u1e63ar f\u012b \u1e25is\u0101b al-\u011fabr wa-l-muq\u0101bala.jpg|thumb|right|200px|L-ewwel pa\u0121na tal-ktieb ta' al-Khwari\u017cmi]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Il-kelma \"''al\u0121ebra''\" \u0121ejja mill-G\u0127arbi \"''al-\u0121abr''\" fit-titlu tal-ktieb\u00a0 \"''al-Kitab al-muhtasar fi \u0127isab al-\u0121abr wa-l-muqabala''\", li jfisser ''Il-ktieb fil-qosor fi \u0127sib il-\u0121bir u tqassim''. Dan kitbu il-matematiku Persjan\u00a0 [[Mu\u0127ammad ibn Musa al-Khwari\u017cmi]] (G\u0127arbi: \u0645\u062d\u0645\u062f \u0628\u0646 \u0645\u0648\u0633\u0649 \u0627\u0644\u062e\u0648\u0627\u0631\u0632\u0645\u064a\u0651 \u0627\u0644\u0645\u062c\u0648\u0633\u064a\u0651 \u0627\u0644\u0642\u0637\u0631\u0628\u0651\u0644\u064a\u0651) fit-820. Il-matematiku Grieg [[Diofantu]] (Grieg: \u0394\u03b9\u03cc\u03c6\u03b1\u03bd\u03c4\u03bf\u03c2 \u1f41 \u1f08\u03bb\u03b5\u03be\u03b1\u03bd\u03b4\u03c1\u03b5\u03cd\u03c2 t. bejn [[200]] u [[214]], m. bejn [[284]] u [[298]] AD) hu tradizzjonalment mag\u0127ruf b\u0127ala \u201cmissier l-al\u0121ebra\u201d imma hemm argument jekk Al-Khwari\u017cmi g\u0127andux jo\u0127odlu dan it-titlu. Dawk li j\u017commu ma Al-Khwari\u017cmi jsossnu li \u0127afna mix-xog\u0127ol tieg\u0127u fuq \u201cil-\u0121bir\u201d jew riduzzjoni g\u0127adu u\u017cat sa llum u li hu ta spjegazzjoni kompleta fuq is-soluzzjoni ta\u2019 l-ekwazzjonijiet kwadrati\u010bi. Dawk li j\u017commu ma [[Diofantu]] jg\u0127idu li l-al\u0121ebra li nsibu f\u2019''Al-\u0120abr'' hi i\u017cjed elementari mill-al\u0121ebra fl- ''Aritmetika'' ta\u2019 Diofantu u li l-''Aritmetika'' hi miktuba fi stil sinkopat waqt li ''Al-\u0120abr'' hi kollha fi stil retoriku. Matematiku Persjan ie\u0127or, [[Omar Khajjam]] (Persjan: \u063a\u06cc\u0627\u062b \u0627\u0644\u062f\u06cc\u0646 \u0627\u0628\u0648 \u0627\u0644\u0641\u062a\u062d \u0639\u0645\u0631 \u0628\u0646 \u0627\u0628\u0631\u0627\u0647\u06cc\u0645 \u062e\u06cc\u0627\u0645 \u0646\u06cc\u0634\u0627\u0628\u0648\u0631\u06cc t. 18 ta\u2019 Mejju, 1048, m. 4 ta\u2019 Di\u010bembru, 1131), \u017cviluppa l-[[\u0121ometrija al\u0121ebrija]] u sab soluzzjoni \u0121enerali \u0121ometrika ta\u2019 l-[[ekwazzjonijiet kubi\u010bi]]. Il-matemati\u010bi Indjani [[Ma\u0127avira]] u [[Baskara II]], u l-matematiku \u010aini\u017c [[\u017bu Xi\u0121je]], irri\u017colvew xi ka\u017ci ta\u2019 ekwazzjonijiet kubi\u010bi, [[kwarti\u010bi]], [[kwinti\u010bi]] u [[polinomjali]] ta\u2019 ordni og\u0127la.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">F\u2019nofs is-seklu 16 kien hemm \u017cvilupp importanti ie\u0127or ta' l-al\u0121ebra. Dan kien is-soluzzjoni al\u0121ebrija \u0121enerali tal-ekwazzjonijiet kubi\u010bi u kwarti\u010bi. L-ideja ta\u2019 [[determinant]] \u017cviluppha l-matematiku \u0120appuni\u017c [[Kowa Seki]] fis-seklu 17, u g\u0127axar snin wara [[Gottfried Leibniz]] u\u017ca d-determinanti biex jirri\u017colvi sistemi ta\u2019 ekwazzjonijiet linjari simultanji premezz tal-[[matri\u010bi]]. Fis-seklu 18, [[Gabriel Cramer]] ukoll \u0127adem fuq il-matri\u010bi u d-determinanti. L-i\u017cvilupp ta\u2019 l-[[Al\u0121ebra astratta]] sar fis-seklu 19. Fil-bidu dan ix-xog\u0127ol ikkon\u010bentra fuq li da\u017c-\u017cmien insej\u0127ulha it-[[teorija ta\u2019 Galois]] u fuq kwistjonijiet tal-[[kostruttibbilt\u00e0]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L-istadji ta\u2019 l-i\u017cvilupp ta\u2019 l-al\u0121ebra simbolika kienu bejn wie\u0127ed u ie\u0127or dawn:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Al\u0121ebra retorika, li \u017cviluppawha l-Babilonjani u baqet dominanti sas-seklu 16;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Al\u0121ebra \u0121ometrika kostruttiva, li tawha \u0127afna mportanza il-matemati\u010bi Indjani u l-matemati\u010bi klassi\u010bi Griegi;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Al\u0121ebra sinkopata, li kienet \u017cviluppata minn [[Diofantu]</ins>] <ins class=\"diffchange diffchange-inline\">u fil-''[[Manuskritt Bakxali]]''; </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* <ins class=\"diffchange diffchange-inline\">Al\u0121ebra simbolika, li la\u0127qet il-qu\u010b\u010bata fix-xog\u0127ol ta\u2019 </ins>[<ins class=\"diffchange diffchange-inline\">[Leibniz]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Kronolo\u0121ija ta\u2019 \u017cviluppi kriti\u010bi fl-al\u0121ebra:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 1800 QK: Fit-[[tavletta ta\u2019 Strassburg]] il-Babilonjani jfittxu s-soluzzjoni ta\u2019 ekwazzjoni ellittika kwadratika.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 1600 QK</ins>: <ins class=\"diffchange diffchange-inline\">It-tavletta ta\u2019 ''[[Plimpton 322]]'' tag\u0127ti tavola ta\u2019 [[trippli Pitagori\u010bi]] fi skritt [[Kuneiformi]] Babilonjan</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 800 QK: Il-matematiku Indjan [[Bawdajana]], fix-xog\u0127ol tieg\u0127u ''[[Sulba Sutra]]'', jiskopri\u00a0 trippli Pitagori\u010bi b\u2019metodi al\u0121ebrin, jsib soluzzjonijiet \u0121ometri\u010bi ta\u2019 ekwazzjonijiet linjari u ekwazzjonijiet kwadrati\u010bi tal-forma ax&lt;sup&gt;2&lt;</ins>/<ins class=\"diffchange diffchange-inline\">sup&gt; = c u ax&lt;sup&gt;2&lt;</ins>/<ins class=\"diffchange diffchange-inline\">sup&gt; + bx = c, u jsib \u017cew\u0121 settijiet ta\u2019 soluzzjonijiet integrali po\u017cittivi g\u0127al sett ta\u2019 ekwazzjonijiet simultanji Diofantini</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 600 QK: Il-matematiku Indjan [[Apastamba]], fix-xog\u0127ol tieg\u0127u ''Apastamba Sulba Sutra'', jirri\u017colvi l-ekwazzjoni linjari \u0121enerali u ju\u017ca ekwazzjonijiet simultanji Diofantini b\u2019sa \u0127ames kwantitajiet mhux mag\u0127rufa</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 300 QK: Fit-tieni ktieb ta\u2019 l-Elementi, [[Ewklide|Ewklidi]] jag\u0127ti kostruzzjoni \u0121ometrika b\u2019metodi Ewklidej g\u0127as-soluzzjoni ta\u2019 l-ekwazzjoni kwadratika g\u0127al radi\u010bi posittivi reali.\u00a0 Il-kostruzzjoni hi dovuta g\u0127all-iSkola Pitagorika tal-\u0121ometrija.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 300 QK</ins>: <ins class=\"diffchange diffchange-inline\">Titfittex kostruzzjoni \u0121ometrika g\u0127as-soluzzjoni ta\u2019 l-ekwazzjoni kubika.\u00a0 Issa nafu li bil-metodi Ewklidej ma nistg\u0127ux insibu soluzzjoni g\u0127all-ekwazzjoni kubika \u0121enerali.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 100 QK</ins>: <ins class=\"diffchange diffchange-inline\">Il-ktieb tal-matematika \u010aini\u017c ''[[\u0120ju\u017cang Suwanxu]]'' (''Id-Disg\u0127a Kapitli </ins>fuq <ins class=\"diffchange diffchange-inline\">l-Arti Matematika''), jittratta Ekwazzjonijiet al\u0121ebrin. Dal-ktieb fih soluzzjonijiet ta\u2019 ekwazzjonijiet linjari bl-u\u017cu tar-[[regola tal-po\u017cizzjoni falza doppja]], soluzzjonijiet gometri\u010bi ta\u2019 ekwazzjonijiet kwadrati\u010bi, u soluzzjonijiet ta\u2019 matri\u010bi, ekwivalenti g\u0127all-metodi moderni, g\u0127as-soluzzjoni tas-sistemi ta\u2019 ekwazzjonijiet linjari simultanji.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 100 QK: Il-''[[Manuskritt ta\u2019 Bakxali]]'', miktub fl-Indja, ju\u017ca forma ta\u2019 notazzjoni al\u0121ebrija bl-ittri u sinjali o\u0127ra, u fih ekwazzjonijiet kubi\u010bi u kwarti\u010bi, soluzzjonijiet al\u0121ebrin ta\u2019 [[ekwazzjonijiet linjari]] b\u2019sa \u0127ames kwantitajiet mhux mag\u0127rufa, </ins>il-<ins class=\"diffchange diffchange-inline\">formula al\u0121ebrija \u0121enerali g\u0127all-ekwazzjoni kwadrati\u010bi, u soluzzjonijiet ta\u2019 ekwazzjonijiet kwadrati\u010bi indeterminati u ekwazzjonijiet simultanji.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Stampa:Diophantus-cover.jpg|thumb|right|200px| Pa\u0121na titulari ta\u2019 l-edizzjoni ta\u2019 1621 ta\u2019 l-''Arithmetica'' ta\u2019 Diofantu, maqluba g\u0127all-Latin minn de M\u00e9ziriac]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 150 AD: Il-matematiku E\u0121izzjan Ellenistiku [[Eroni ta\u2019 Lixandra]</ins>]<ins class=\"diffchange diffchange-inline\">, jittratta l-ekwazzjonijiet al\u0121ebrin fi tliet volumi tal-matematika.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* <ins class=\"diffchange diffchange-inline\">\u010airka 200: Il-matematiku Babilonjan Ellenistiku, [</ins>[<ins class=\"diffchange diffchange-inline\">Diofantu]] li g\u0127ex fl-E\u0121ittu u li \u0127afna jikkunsidrawh b\u0127ala \"missier l-al\u0121ebra\", jikteb l-opra famu\u017ca tieg\u0127u, l-''Aritmetika'', li fiha soluzzjonijiet ta\u2019 ekwazzjonijiet al\u0121ebrin u xog\u0127ol fuq it-teorija tan-numri.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 499</ins>: <ins class=\"diffchange diffchange-inline\">Il-matematiku Indjan [[Arjabata]], fit-trattat tieg\u0127u ''Arjabatija'', jsib soluzzjonijiet interi g\u0127al xi ekwazzjonijiet linjari b\u2019metodu ekwivalenti g\u0127al dak li nu\u017caw illum, jiddeskrivi s-soluzzjoni integrali \u0121enerali ta\u2019 l-ekwazzjoni linjari indeterminata u jag\u0127ti soluzzjonijiet integrali ta\u2019 xi ekwazzjonijiet linjari simultanji indeterminati.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 625: Il-matematiku \u010aini\u017c, Wang [[Ksijaotong]],\u00a0 jsib soluzzjonijiet numeri\u010bi ta\u2019 ekwazzjonijiet kubi\u010bi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 628: Il-matematiku Indjan, [[Brahmagupta]], fit-trattat tieg\u0127u ''Brahma Sputa Siddhanta'', jivvinta l-metodu ''\u010bakravala'' g\u0127as-soluzzjoni ta\u2019 xi ekwazzjonijiet kwadrati\u010bi simultanji indeterminati, fosthom l-ekwazzjoni ta\u2019 Pell, u jag\u0127ti regoli g\u0127as-soluzzjoni ta\u2019 l-ekwazzjonijiet linjari u kwadrati\u010bi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 820: Il-matematiku Persjan, Muhammad ibn Musa [[al-Khwari\u017cmi]], jikteb it-trattat intitolat ''Al-Kitab al-\u0120abr wa-l-Muqabala'' (li tfisser \"Il-Ktieb tal-\u0121bir u t-tqabbil\") fuq is-soluzzjoni sistematika ta\u2019 l-ekwazzjonijiet linjari u kwadrati\u010bi. Il-kelma ''al\u0121ebra'' \u0121ejja minn ''al-\u0120abr'' fit-titlu ta\u2019 dal-ktieb. Al-Khwari\u017cmi hu kkunsidrat minn bosta b\u0127ala \"missier l-al\u0121ebra\" u \u0127afna mill-metodi tieg\u0127u ta\u2019 riduzzjoni jew \u2018\u2019\u0121bir\u2019\u2019 g\u0127adna\u00a0 nu\u017cawhom fl-al\u0121ebra sa llum.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 850:\u00a0 Il-matematiku Persjan, [[al-Ma\u0127ani]], ja\u0127seb fl-ideja ta\u2019 riduzzjoni ta\u2019 problemi \u0121ometri\u010bi, b\u0127ad-duplikazzjoni tal-kubu, g\u0127al problemi fl-al\u0121ebra.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 850 Il-matematiku, [[Mahavira]], jirri\u017colvi bosta ekwazzjonijiet kwadrati\u010bi, kubi\u010bi, kwarti\u010bi, kwinti\u010bi u ta\u2019 ordni og\u0127la kif ukoll xi ekwazzjonijiet indeterminati. kwadrati\u010bi, kubi\u010bi u ta\u2019 ordni og\u0127la. </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 990:\u00a0 Il-Persjan [[Abu Bakr al-Kara\u0121i]], fit-trattat tieg\u0127u ''al-Fakhri'', ji\u017cviluppa l-al\u0121ebra i\u017cjed billi jestendi l-metodolo\u0121ija ta\u2019 Al-Khwari\u017cmi biex tinkludi poteri integrali u radi\u010bi integrali ta\u2019 kwantitajiet mhux mag\u0127rufa. Jissostwixxi l-operazzjonijiet gometri\u010bi ta\u2019 l-al\u0121ebra b\u2019operazzjonijiet aritmeti\u010bi moderni, u jiddefinixxi il-monomjali x, x&lt;sup&gt;2&lt;</ins>/<ins class=\"diffchange diffchange-inline\">sup&gt;, x&lt;sup&gt;3&lt;</ins>/<ins class=\"diffchange diffchange-inline\">sup&gt;, </ins>..<ins class=\"diffchange diffchange-inline\">. u 1</ins>/<ins class=\"diffchange diffchange-inline\">x, 1</ins>/<ins class=\"diffchange diffchange-inline\">x&lt;sup&gt;2&lt;</ins>/<ins class=\"diffchange diffchange-inline\">sup&gt;, 1/x&lt;sup&gt;3&lt;/sup&gt;, ... u jag\u0127ti\u00a0 l</ins>-<ins class=\"diffchange diffchange-inline\">prodott ta\u2019 kull par minn dawn</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 1050: Il-matematiku \u010aini\u017c, [[\u0120ija Ksijan]], jsib soluzzjonijiet numeri\u010bi ta\u2019 ekwazzjonijiet polinomjali</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1072:\u00a0 Il-matematiku Persjan, [[Omar Khajjam]], ji\u017cviluppa l-\u0121ometrija al\u0121ebrija, u fit-''Trattat fuq Dimostrazzjoni ta\u2019 Problemi fl-Al\u0121ebra'',\u00a0 jag\u0127ti klassifikazzjoni ta\u2019 ekwazzjonijiet kubi\u010bi permezz ta\u2019soluzzjonijiet \u0121ometri\u010bi \u0121enerali misjuba bis-sezzjonijiet koni\u010bi ntlaqqin.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1114: Il-matematiku Indjan, [[Bhaskara]], fil- ''Bi\u0121aganita'' (''Al\u0121ebra''), jinduna li numru po\u017cittiv g\u0127andu radi\u010bi kwadrata po\u017cittiva u o\u0127ra negattiva, u jirri\u017colvi bosta ekwazzjonijiet kubi\u010bi, kwarti\u010bi, kwinti\u010bi u ta\u2019 ordni polinomjali, kif ukoll l-ekwazzjoni kwadratika \u0121enerali indeterminata.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1202: L-al\u0121ebra tid\u0127ol l-Ewropa l-iktar im\u0127abba x-xog\u0127ol ta\u2019 [[Leonardo Fibonacci]] ta\u2019 Pisa fil-ktieb tieg\u0127u ''[[Liber Abaci]]''.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 1300: Il-matematiku \u010aini\u017c, [[\u017bhu Xi\u0121je]], jittratta l-al\u0121ebra polinomjali, jirri\u017colvi ekwazzjonijiet kwadrati\u010bi, ekwazzjonijiet simultanji u ekwazzjonijiet b\u2019sa erbg\u0127a kwantitajiet mhux mag\u0127rufa, u jirri\u017colvi numerikament xi ekwazzjonijiet kwarti\u010bi, kwinti\u010bi u polinomjali ta\u2019 ordni og\u0127la.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Stampa:Evariste galois.jpg|thumb|right|200px| \u00c9variste Galois t</ins>.<ins class=\"diffchange diffchange-inline\">1811 m.1832]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u010airka 1400: </ins>Il-<ins class=\"diffchange diffchange-inline\">matematiku Indjan, [[Madhava ta\u2019 Sangamagramma]], jiskopri metodi iterattivi g\u0127as-soluzzjoni approssima ta\u2019 ekwazzjonijiet mhux linjari.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1535: Nicolo Fontana [[Tartaglia]] u\u00a0 matemati\u010bi o\u0127ra fl-Italja independentement\u00a0 jirri\u017colvu l-ekwazzjoni kubika \u0121enerali.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1545: Girolamo [[Cardano]] jippublika ''Ars magna'' (''L-Arti l-Kbira'') fejn jag\u0127ti s-soluzzjoni ta\u2019 Fontana g\u0127all-ekwazzjoni kwartika \u0121enerali.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1572: Rafael [[Bombelli]] jsib ir-radi\u010bi komplessa </ins>tal-<ins class=\"diffchange diffchange-inline\">kubiku u jtejjeb in-notazzjoni kurrenti.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1591: [[Fran\u00e7ois Vi\u00e8te]] ji\u017cviluppa u jtejjeb in-notazzjoni simbolika g\u0127all-poteri fil-ktieb ''In artem analyticam isagoge''.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1682: [[Gottfried Leibniz|Gottfried Wilhelm Leibniz]] ji\u017cviluppa l-manipulazzjoni simbolika b\u2019regoli formali li jg\u0127idilhom ''characteristica generalis''.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1680s: Il-matematiku \u0120appuni\u017c, [[Kowa Seki]], fil-''Metodu g\u0127as-soluzzjoni ta\u2019 problemi dissimulati'', jiskopri d-determinant u n-[[numri ta\u2019 Bernoulli]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1750: [[Gabriel Cramer]], fit-trattat tieg\u0127u\u00a0 '</ins>'<ins class=\"diffchange diffchange-inline\">Introduzzjoni g\u0127all-analisi ta\u2019 kurvi al\u0121ebrin'', jipproponi r-[[regola ta\u2019 Cramer]] u jistudja </ins>l<ins class=\"diffchange diffchange-inline\">-kurvi al\u0121ebrin, il-matri\u010bi u d-determinanti.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1824: [[Niels Henrik Abel]] jipprova li ma nistg\u0127ux nirri\u017colvu l-ekwazzjoni kwintika \u0121enerali bir-radi\u010bi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* 1832: It-teorija ta\u2019 Galois ji\u017cviluppha [[\u00c9variste Galois]] fix-xog\u0127ol tieg\u0127u fuq l-al\u0121ebra astratta.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Portal Matematika}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Kategorija:Matematika| ]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Kategorija:10 artikli essenzjali]</ins>]</div></td></tr>\n"
    }
}